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Fracture propagation in brittle
granular matter
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It is nearly a century since Alan Arnold Griffith developed his energy criterion for the
fracture propagation of cracks in ‘near-continuous’ solids. Needless to say that his
celebrated work has revolutionized the world of material science. In a very succinct way,
Griffith connected between three important aspects of the fracture process: (i) the
material, (i) the stress level, and (iii) the geometry of the crack. Nothing similar was
developed for brittle granular matter, although in these materials fracture propagates in
the sense of comminution. Recently, I have developed an energy theory, called breakage
mechanics, based on the concept of breakage. However, the analogy between the
mechanics of breakage and fracture is missing. Here I establish this relation using energy
principles and derive a critical comminution pressure for brittle granular materials. This
critical pressure is surprisingly complementary to Griffith’s critical tensile stress for near-
continuous materials. This step enables for the first time to apply the principles of
fracture mechanics to all disciplines dealing with confined particles comminution such as
geophysics, geology, geotechnical engineering, mineral processing, agriculture and food
industry, pharmaceutics and powder technology.
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1. Introduction

Granular materials are among nature’s most versatile mechanical systems. They
behave as a gas or a fluid if their grains are unconfined, but as a solid granular
agglomerate if sufficiently confined and the jamming of force chains occurs (e.g.
Aharonov & Sparks 1999; Corwin et al. 2005). When the confining pressure is
sufficiently large grain crushing may commence. Energy principles have been
applied to study size reduction of particles ever since von Rittinger (1867) and
Kick (1883) developed their theory of comminution. Rittinger suggested that the
new surface area produced is proportional to the energy consumed, while Kick
proposed that relative reduction occurs irrespective of the original size. Although
their work is the starting point for many solutions in mineral processing, much
controversy arose about their hypotheses as other workers produced results to
satisfy either one or the other (Lynch 1977). The prevailing problem is that they do
not connect the factors which govern energy consumption, i.e. the boundary
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conditions of the problem and the rheology of the material. This fact has been
known for many years to geotechnical engineers, developing constitutive relations
that connect between stresses and strains. However, the problem with most of
these relations is that they are purely phenomenological. Only minimal attention
was paid to develop models that relate to the evolution laws at the physical
microscopic level of crushing (e.g. Papamichos et al. 1993; McDowell et al. 1996).

One of the cornerstones of material science (e.g. Gordon 1988) is the Griffith
theory (Griffith 1921) which presents an energy criterion for the fracture
propagation of cracks in ‘near-continuous’ solids. Griffith suggested that the
weakening of material by a crack could be treated as an equilibrium problem in
which the reduction of strain energy, when the crack propagates, could be
equated to the increase in surface energy due to the increase in surface area.
Figure 1a presents the schematic of the problem Griffith addressed, where a plate
with an initial elliptical hole of the length 2a is tensioned, so that after the
fracture propagates the length of the elliptical hole becomes 2(a+da). Griffith
found that the critical stress to cause a crack to extend is oo, =(2Ey/ma)'/?
where E is Young’s modulus and v is the surface energy. Griffith’s original work
dealt with very brittle materials. To account for the material ductility, Irwin
(1957) suggested that catastrophic fracture occurs when the released strain
energy is absorbed by energy dissipation due to plastic flow in the material near
the crack tip, and denoted the critical strain energy release rate by the parameter
G,; the Griffith equation can then be rewritten as follows:

E
O = GC. (1.1)

Ta

This expression describes, in a very succinct way, the interrelation between three
important aspects of the fracture process: (i) the material, as accounted by G,
and Young’s modulus E, (ii) the stress level ., and (iii) the geometry of the
crack using its length 2a.

Griffith’s analysis, however, was concerned with near-continuous brittle
materials. Nothing similar exists to describe brittle granular matter—a
particulate system that can no longer be defined as near continuous. The
elementary problem we address is shown schematically in figure 1b, where
isotropic compression is identified as the fundamental problem to be solved.
Recently, I have developed an energy theory, called breakage mechanics (Einav
2007a), based on the concept of breakage. However, the analogy between the
mechanics of breakage and fracture is missing. Here I develop this relation and
concisely derive a formula for the critical comminution pressure in confined
brittle granular matter (i.e. a formula for the pressure at the onset of significant
grain crushing). This critical pressure is astonishingly complementary to
Griffith’s critical fracture tensile stress for near-continuous materials.

2. Breakage and self-organized criticality

The elementary problem addressed in this paper is shown schematically in
figure 1b. We start by considering a confined configuration under isotropic
pressure conditions. A minimal reference pressure p, must be applied before the
jamming of force chains occurs and the granular material may be considered as a
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Figure 1. Fracture propagation. (a) The schematic of Griffith (1921) problem of tensioned ‘near-
continuous’ solid plates with an initial elliptical hole of length 2a: (i) before and (ii) after. (b) The
problem of compressed granular agglomerates (p(d) defines the grain size distribution as a
probability density function; not to be confused with p which stands for the pressure): (i) before
and (ii) after.

solid granular agglomerate, distinguished from granular fluids and granular
gasses (e.g. Aharonov & Sparks 1999). Although not referring to jamming as
such, in soil mechanics this pressure is tacitly assumed at the order of 1 kPa; a
much smaller pressure before crushing starts. Under these conditions, we may
apply the principles of continuum mechanics. It is important to note that the
fracture in granular materials is linked to the evolving statistics of the grain size
distribution. Before some critical pressure is reached, granular systems continue
to be jammed, without any changes to the grain size distribution. After the
commencement of grain crushing, the entire grain size distribution is changed
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from a statistical view point. At this stage, the jammed configuration of the force
chains gets unjammed again, and the fragments can self-organize. Crushing is
therefore playing an active role under isotropic compression, without which no
dissipation occurs. Therefore, for the study of critical comminution pressure, one
can neglect the other sources of energy consumption and this is exactly why we
chose isotropic compression as the fundamental problem to solve. Plastic
dissipation does exist, and can be introduced by adopting the coupling breakage—
plasticity formulation of Einav (2007b), but the derived formula of the critical
comminution pressure would remain as in the current analysis. There is a
relation between the way the grain size distribution evolves and how the grains
organize. This connection may be efficiently described using the concept of the
measurable quantity of breakage B (Einav 2007a). Similar definitions for
breakage were given by Hardin (1985) and Wood (2006).

The emergence of the critical behaviour of many systems does not depend on
finely tuning the details of the system (Bak et al. 1987). Evolving systems that
have a critical point as an attractor (a state to which the system evolves after a
long enough time) present self-organized criticality as a property. It is possible to
view confined comminution as one of such processes. In detail, comminution of
brittle granular systems tends to minimize the occurrence of any dispropor-
tionate shear stress that individual particles might carry (McDowell et al. 1996).
As bigger particles are cushioned more, they carry larger normal contact forces,
but this is counterbalanced by the smaller particles that statistically attract less
contacts, which lead to higher stress concentration within them. Eventually, as
comminution progresses and the unbalanced shear stresses fall bellow a critical
level to cause further crushing, an apollonian-like organization tends to form a
hint to fractal nature and self-similarity (Sammis et al. 1987). The fractal grain
size distribution may therefore be seen as the strange attractor to confined
comminution. Although it is important to note that under certain pathological
conditions (e.g. crushing of initially bi-sized mixtures), a pure fractal distribution
would not emerge, an alternative ultimate grain size distribution will evolve,
following a different path of organization. In many naturally occurring
conditions, where pure fractal scale tends to emerge, the grain size distribution
becomes a power law, inversely proportional to the grain sizes. The ultimate
cumulative grain size distribution by mass F,(d) also turns out to be a power law
(Turcotte 1986), with grain sizes ranging below the largest grain size in the
original and ultimate packings dy;. Consideration of fracture mechanics at the
level of the individual grains shows that the grain sizes should be bounded from
below by a minimal grain size d,, (Kendall 1978). Differentiating the cumulative
distribution gives the probability density function (pdf) of the grain sizes p,(d).
Starting with an initial distribution py(d) (or Fy(d)), the current distribution is
being attracted to the ultimate distribution. We may define the current state by
a measurable internal state variable B, which we call the ‘breakage’. This
property denotes the relation between the initial, current and ultimate (which
could be fractal or not) cumulative grain size distributions as shown in figure 2a.

After viewing the ultimate distribution as an attractor, we can physically
interpret breakage as a measure of the criticality proximity, with a value
bounded between 0 and 1, 1> B>0. When B approaches unity, the system tends
to criticality. We take the strong hypothesis that this measure is fractionally
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Figure 2. (a) The measurable definition of breakage (Einav 2007a). (b) The breakage propagation
criterion for granular materials (Einav 2007a). The incremental breakage dissipation is equal to
the incremental change in the residual breakage energy.

independent and write as follows:
p(d) = po(d)(1 = B) + p,(d)B. (2.1)

The fractional identity hypothesis enforces the different points along the current
cumulative distribution to scale similarly to the corresponding points along the
initial and ultimate distributions, but the usefulness of this assumption was
proven (Einav 2007a).

In its incremental form, equation (2.1) becomes

6B = op(d)/(pu(d) — po(d))- (2.2)

Therefore, the evolution of breakage, 6 B, effectively spans the entire variation of
the grain size distribution dp(d).

3. Breakage energy

Let z(d) be an average quantity for all grains with a diameter that lies within
the fraction of sizes (d—dd/2)<d<(d+dd/2). We use the conventional
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notation for the statistical average of this variate within the entire assembly (i.e. a
representative quantity for all fractions), using the pdf of the grain sizes

X

dM
(x) = Jd p(d)z(d)dd, (3.1)

so that using equation (2.1), we have
X =(z) = (1= B)(z)g + B(x), (3.2)

where (x)¢ and (z), are the statistical averages of 2(d) using the initial po(d) and
ultimate p,(d) grain size distributions. By accepting the additivity property of
energy, we may express the statistical average of the stored energy of the entire
agglomerate by

V=) =(1-B){¥)+ B (3.3)

where Y =y/(d) designates the energy density function of a given fraction size d, an
average quantity for all the particles in the fraction itself.

Within the rigorous confinement of thermodynamics (Einav 2007a), we define
the ‘breakage energy’ and ‘residual breakage energy’ by

Ep =—0¥/0B = (Y)o— (), and (3.4)

By = Eg(1—B) = (1=B)(¥)o—(¥)) = W) = (). (3.5)

We see that the breakage energy FEp relates to the difference between the
macroscopic statistical averages of the stored energy using the initial and the
ultimate distributions. Before any crushing occurs, this energy difference denotes
the potential of the granular system to be pushed towards criticality. However, it
is important to define this potential at any stage of the loading process, i.e. to
assess the tendency of the material to reach criticality after crushing has already
occurred. Therefore, what we actually need is the difference between the current
and ultimate energy averages. This is precisely the reason for defining the
residual breakage energy Ef.
Combining equations (3.3) and (3.4) gives the following relation:

W = (y),— EnB. (3.6)

4. Energy balance in comminution

Griffith (1921) assumed that growth of a crack in near-continuous solids requires
creation of surface energy, which is supplied by the loss of strain energy
accompanying the relaxation of local stresses as the crack advances. Fracture
occurs when the loss of strain energy is sufficient to provide the increase in
surface energy. We need a similar criterion for granular materials, but the
problem is that their topology is much richer than the cracked plate problem.
For our advantage, however, the increase in surface area can be analysed for a
statistical assembly. Figure 2b denotes the breakage area relating to the residual
breakage energy E7j;, using equation (3.4). Recall that this energy denotes the
remaining ability of the system to break particles towards reaching criticality. As
figure 2b shows, a change in breakage carries changes to the residual breakage
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area, highlighted by the grey-crescent area in the figure. This incremental area
corresponds only to fragments that comminuted at that particular instance.
Therefore, the energy that the material consumes at a given moment, or the
incremental change in breakage dissipation @3, must correspond to the loss in
residual breakage energy (Einav 2007a)

Dy = 0ER >0, (4.1)

where the inequality denotes ‘propagation’ and the equality is concerned with
unloading or the non-comminuting elastic state. This equation is analogous to
Griffith’s energy equilibrium. The fragmentation creates new surface energy,
which is supplied by the loss of strain energy accompanying the relaxation of
local internal contact forces as the grains get smaller and unjamming occurs. We
note that 6Ef = (1 —B)0Eg — EpéB. Within the confines of rate-independent
processes, the dissipation is assumed as first order in the rate of the internal
variables (here, the breakage), i.e. @g=(0Pp/00B)6B and that 0¢y/06B be the
dissipative version of the energy breakage Eg. Therefore, we have (1— B)6Eg—
2FEgoB=0. This is the evolution equation of breakage during comminution.
Integrating this equation gives the breakage yielding condition

ys = Ex(1—B)*—E, <0, (4.2)

where E,. is a new constant of integration, denoting the critical breakage energy
Eg needed to start causing particles to crush (i.e. when B is still 0). The status of
this constant is similar to Griffith’s energy constant G., but here E, is taken as a
statistical measure of the granular agglomerate. This constant is believed to
relate to microscopic material properties (the particle mineralogy, local particle
defects and their angularity) and not on the grain size distribution and the
macroscopic void ratio. When particles break, breakage yielding gives Eg=
Ec(l—B)72, and energy is dissipated. Therefore, the breakage dissipation may
be expressed explicitly by

&y = EgdB = E,(1—B) ?B. (4.3)

We would like to examine the relation of the above breakage growth criterion
in the sense of fracture mechanics, i.e. in terms of surface area growth. For that
purpose, the problem is simplified for the analysis of a compressed system of
perfectly incompressible elastic-brittle spheres. Since the overall mass of solids in
granular agglomerates has to remain constant irrespective of the reduction in the
fragment sizes (and the total increase in their number), it is the average-specific
surface area (i.e. the average of the particles’ surface area divided by their
volume) that we have to consider. Since for spheres the specific surface area of a
particle with diameter d is s(d)=6/d,

S=(s) = (1—B)S, + BS,, (4.4)

where the initial and ultimate specific areas are denoted by Sy=6(d" '), and
Su=6<d71>u, respectively. These parameter constants relate linearly to the
inverse of the initial and ultimate mean harmonic grain sizes. This equation can
be solved for B and its incremental change 0B, giving

B=(5—5)/(S.— Sy) and (4.5)
0B =06S/(5,— ). (4.6)
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Therefore, a duality is established between the breakage mechanics formulation
and the specific surface area approach, as in fracture mechanics,

S-S §— 8,
V= m<¢>o + S =5 (¥)y and (4.7)
by = ECLSOZ(SS. (4.8)

(Su _S)

Since the specific surface area of particles get larger as their fragments get
smaller, we have §,>5> 5. Initially, the mean specific surface area in the
assembly is Sy, hence ¥=(y)y, but as S—S,, ¥—(y),. Furthermore, the
analysis suggests that more energy is needed for breaking particles as S— S,
since the denominator in @ approaches 0. Finally, we may rephrase the

breakage condition yg=0, as
E - 2
B — (75“ SO) . (4.9)

E, S, — S
To establish the analogy between breakage dissipation and fracture

dissipation, it is possible to define the specific surface area energy, as the
thermodynamics conjugate to the mean specific surface area S,

Eg =—0¥/0S = Eg/(S,— S)- (4.10)
Therefore,
ES Su B S()
—_ = 4.11
B (Su - S)2 ( )
Combining the last relation and equation (4.8) gives the relation
b = &g = FEg08S. (4.12)

This relation resembles the increment of non-negative entropy production, as
defined by Rice (1978) in his work on fracture mechanics. The property FEg is
equivalent to specific surface energy v as in Griffith’s analysis. It shows that the
breakage dissipation essentially denotes the energy consumption from the
creation of new (mean specific) surface area, as in fracture mechanics.

5. Critical comminution pressure

In granular systems, bigger particles tend to attract more contact points due to
their larger surface area. Therefore, the energy that is stored on average in the
individual particles may be expected to scale linearly with the surface area, in a
universal manner and independent of the grain size distribution (neglecting the
pathological near-crystalline distributions). Figure 3 examines this hypothesis
based on three different distinct element method simulations, each using a
different grain size distribution. The first simulation presents the result from a
system of two-dimensional grains with a (discrete) fractal distribution of sizes
Nyocd ' for five distinct sizes. The other two simulations are based on
(continuous) uniform distributions of grain sizes (by number) with the ratio of
biggest-to-smallest particle being 1.5 and 20. These distributions were specifically
selected to be as versatile in character as possible, examining the above scaling
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Figure 3. The universality of the energy stored in the different fraction sizes, shown to scale linearly
with the particle surface area.

hypothesis for granular materials ranging from being poorly graded, well-graded
and ultimately fractal distributions. Albeit minor deviations, attributed mainly to
the numerical overlaps between the particles, it is important to note that the
average stored energy in the various fractions ¥/(d) scales linearly with the grain
surface area (in the system of discs, taken as wd ), almost perfectly universally and
independent of the imposed grain size distribution.

In a system of discs, the surface area is proportional to the grain sizes, but in a
system of spheres, the surface area is proportional to the diameter squared, therefore

Y(d) = (W(d) d* /(&) =W d*/(d*). (5.1)
Since in figure 3 it was argued numerically that this relation does not depend on the
specific grain size distribution, we can use either the initial or ultimate grain size
distributions, and write

(W(d))o/(d")o = (W(d))u/(d)s. (5-2)

Combining the equations (5.2) and (3.4) shows that in the system of spherical
particles the breakage energy becomes

Eg = 9(¥)o, (5.3)
so with equation (3.6), we have
Ep =9¥/(1—-9B), (5.4)
where the parameter
9 =1—(d),/(d*), (5.5)

measures how far the initial grain size distribution is from the ultimate distribution,
in terms of the averaged surface area (or alternatively the second-order moments of
the distributions). In other words, this property depends on geometrical scales,
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measuring the initial proximity to criticality. As specified by equation (4.2), the
yielding in a compressed system of brittle grains is given by EB(l—B)2=EC.
Therefore, using equation (5.4), we write the critical energy required to be stored in
the agglomerate for initiating comminution
1—9B
v.=E —( )2 . (5.6)
(1 —DB)
Before first crushing, we have ¥ = F_/¢¥. In an isotropically compressed linear
elastic system, the bulk modulus is pressure independent and ¥ = p? /2K, giving

e 5.7
PDer g (5.7)

where p,, is the critical comminution pressure; K is the bulk modulus; and F, is the
critical breakage energy constant.

This relation bears striking similarity to Griffith’s equation (1.1) for near-
continuous solids. The above expression describes, in a very succinct way, the
interrelation between three important aspects of the fracture process in brittle
granular matter: (i) the material, as evidenced in the critical breakage energy F,
(as an analogue for G, in Griffith’s expression) and bulk modulus K (as an
analogue for Young’s modulus F), (ii) the pressure level p., (as an analogue for
0.:), and (iii) the geometry of the particles given by the normalized average grain
surface area through 9 (as an analogue to the initial crack length 2a).

The initial average surface area 4mw(d”), is always larger than the ultimate
average surface area 47r(d2)u, suggesting that ¢ is less than unity, but greater
than 0. As closer the initial grain size distribution is to the ultimate distribution,
¥ becomes closer to zero, and the critical pressure gets larger.

It is well known, however, that the bulk modulus of granular matter is in fact a
power function of the pressure, given by K=p K" (p/p,)™, where K" is a
dimensionless constant and m is the Herzian constant. This suggests that ¥ =
pe(p/p)? " ™/(1—m)(2—m)K*. In a system of randomly compacted spheres, the
Herzian constant becomes m=1/2 (Walton 1987). Hence, to account for the
pressure dependency of granular materials, the critical pressure for the start of
confined comminution in a system of brittle spheres is given by

42 |3K*E,
= o e 5.8
Pa =Pl 0. (5.8)

Furthermore, the effective elastic moduli of granular materials are inversely
proportional to the porosity (e.g. Walton 1987; Pestana & Whittle 1995); in
terms of the macroscopic void ratio e, we may write the dimensionless constant of
the instantaneous bulk moduli K* as K*= K*(e)=1/2K,(1+ e)/e. The ‘one-
half” was introduced to have K*= K, when e=1. Hence, the void ratio is taken

into account by writing
3/2 3K€EC(1 + 6)
=p | —— 5.9
P =P\ 5o (5.9)

The last expression presents a factor that does not exist in Griffith’s equation,
the void ratio of the granular assembly, because voids are normally neglected in
near-continuous solids. The result of this addition is our expectation that
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Figure 4. Theoretical versus experimental cumulative grain size distributions, for one-dimensional
compression of silica sand (Nakata et al. 2001). The legend designates the corresponding effective
vertical stresses.

agglomerates would break earlier only if they were initially loosely compacted.
This phenomenon is well documented experimentally in the literature (e.g.
Nakata et al. 2001).

The above result, however, is concerned only with the critical comminution
pressure, before any crushing occurs. After fragmentation, the grain size distribution
evolves and B grows (6B>0). This is what we refer to as ‘fracture propagation’. The
breakage condition in equation (5.6) requires that 0¥,/ E,=(1—9B)(1— B) >, and
since ¥ is a constant between zero and unity, then as crushing evolves and B gets
closer to unity, more strain energy is required for further crushing. We write

43K, E.(1—9B)(1+e)
o 89p,(1—B)%e

, (5.10)

suggesting that the critical pressure increases with breakage. This explains, both
rigorously and physically, what was known for many years in the soil mechanics
community as isotropic hardening (Roscoe & Burland 1968; Schofield & Wroth 1968).

The applicability of this hardening is examined by analysing recent published
experimental results from one-dimensional compression tests on silica sand
(Nakata et al. 2001). The evolution of the grain size distribution as a function of
the applied vertical stress is plotted in figure 4 together with the theoretical
prediction using the fractional identity assumption. For each curve, we use
equation (2.1) to produce the theoretical prediction, and measure B.

The different curves in figure 4 correspond to different normal effective vertical
stresses g, (as designated in the figure legend). Assuming that the lateral/axial
effective stress ratio is given by ky=0.35, the corresponding pressures are
estimated using p=0.5660,. As mentioned before, the current theoretical
analysis considers only the (active) breakage dissipation, ignoring the (passive)
plastic dissipation from rearrangement of particles and friction. The plasticity
effect could, in fact, be accounted for by adopting the coupling breakage—
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Figure 5. Theoretical versus experimental breakage hardening in one-dimensional compression of
silica sand (Nakata et al. 2001), validating the fracture/breakage propagation criterion for brittle
granular matter.

plasticity formulation of Einav (2007), and this reveals the famous linear relation
between the logarithms of the void ratio and pressure by introducing
plastic strains. For simplicity, however, the stored energy is measured via
W=4p.(p/p.)"°/3K*(e). Therefore, the plasticity effect is indirectly accounted
for experimentally by considering the continuous changes in the void ratio e
during the measurement of ¥. Using ¥ =0.87, directly derived from the initial
and ultimate distributions, the relation between breakage and isotropic
hardening is examined by plotting the normalized energy YW /E. versus
(1—9B)(1—B)~? in figure 5. According to equation (5.6), there should be a
one-to-one correlation, so the net effect of the parameters E, and K, and the
initial void ratio is taken to satisfy this condition when breakage first occurs
(i.e. YW ./ E. is taken unity when B=0). Theoretically, this one-to-one correlation
should be maintained irrespective of B, and this is nicely shown in figure 5.

6. Critical comminution shear stress

Einav (2007b) suggested that when shear stresses are involved in the comminution
process, the yielding condition of brittle granular materials may be expressed by

v = (ZB (1 —B)2>2 + <Mip>2 —1<0. (6.1)

C

Alternatively, similar arguments can lead to the following expression:

Ey 2 q ?
= 1-B — —1Z50 6.2
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which we adopt here simply because the mathematical arguments tend to be
cleaner. We highlight that both expressions implicitly consider the active role that
breakage takes in pure compression, since when ¢=0 the above equations reduce to
equation (4.2), and the evolution of the breakage is taken as before. When some
amount of shear is imposed, these new equations deviate from the ideal conditions,
and the role of breakage evolution is gradually reducing and persistent frictional
shear evolves with no grain crushing. Instead, grain crushing is developed from
surface abrasion. As B tends to unity, and grain abrasion stops, both of the above
expressions predict the Mohr—Coulomb friction law given by ¢= Mp.
According to equation (5.3), we can write

YW (1— B)? 7\’
=—+(—] —1Z0. 6.3

BTEa—oB) | \Mp (6:3)

To derive the yielding condition in stress space, the stored energy ¥ has to be
replaced by the stresses. For example, assuming linear elasticity for both shear

and compression deformations, we have ¥ =p*/2K+3¢°/2G, where G is the shear
modulus. This gives the following expression:

HGP* +3KP)1—B) ([ q )’
= — —1L0. 6.4
B 2E,GK(1—0B) Mp = (64)
The critical shear stress under the action of comminution is therefore expressed as
follows:

2E,GK(1—9B)—9Gp*(1—B)?
qﬂziMp\/ LCGK(1—0B) ~0Gp*(L—B)" 65)
2E.GK(1—9B) +3M*p*9K(1—B)

We see that when breakage reaches its limit, we obtain the Mohr—Coulomb failure
criterion. In these conditions, breakage ceases to play any role, and the energy is
dissipated purely from grain sliding and rolling. The evolution of the yield surface, in
equation (6.4), is given as a function of the breakage value B in figure 6.

The initial comminution pressure (according to equation (5.7)) is simply the
intercept of the initial yield surface along the compression line (p=0), and the
growth of this intercept value represents the isotropic hardening property of
the material, as in critical state soil mechanics models (Roscoe & Burland 1968;
Schofield & Wroth 1968). However, unlike critical state soil models, where the
Mohr—Coulomb failure criterion is implicitly given as the product of the flow rule
to the yield surface, here the Mohr—Coulomb failure criterion is simply the
breakage yield surface itself when B=1. In critical state soil mechanics, the shape
and size of the yield surface do not depend on the elastic properties of the
granular material, but the current formulation predicts that they are, in accord
with fracture mechanics.

7. Conclusions

Critical phenomena in nature often share similar properties. According to
Griffith’s energy analysis of the critical conditions for opening a crack immersed
in a solid plate, the critical tensile stress depends on (i) the material via the solid’s
elastic Young’s modulus E, (ii) its critical strain energy release rate G, and (iii) the
geometry of the crack via its length 2a. In this paper we adopt the energy

Proc. R. Soc. A (2007)



3034 I. Einav

q (kPa)

B=1,g=M.
2000 1 P

1500 0.9

1000 0.8

0.6
500

B=0\| p (kPa)
500 1000 1500#/2000 25p0 3000, #4500 4000
-500 Pe(B=0) Pe(B =0.9)

—-1000

—-1500

-2000

Figure 6. Evolution of the critical comminution yield surface due to breakage growth (¢=0.9,
K=30000 kPa, G=10 000 kPa, E.=50kPa, M=1).

formulation of breakage mechanics and find that the critical comminution pressure
in confined brittle granular matter depends on similar properties. Young’s modulus
E is replaced by the bulk modulus K, Griffith’s critical strain energy release rate
constant G, is replaced by the critical breakage energy constant F, and, finally,

the initial crack geometry 2a is replaced by 9 = 1 — (d?), /(d?), where 4m(d?), and
4m(d?), denote the initial and ultimate statistical averaged surface areas of the
grains. In addition, the critical comminution pressure depends further on the
agglomerate porosity (or void ratio)—a property that is normally neglected in
analysing near-continuous solids. As the granular material gets denser, and the
coordination number increase, the bulk modulus of the granular matter increases.
The above-mentioned critical comminution pressure was derived for pure isotropic
loading conditions. To account for possible shear stresses, results have also been
derived by combining the above model with the celebrated Mohr-Coulomb’s
failure criterion. The fundamental difference between the current formulation and
critical state soil mechanics has been noted. This step in understanding enables for
the first time to apply the principles of fracture mechanics to all disciplines dealing
with confined particles comminution such as geophysics, geology, geotechnical
engineering, mineral processing, agriculture and food industry, pharmaceuticals
and powder technology.

The author would like to acknowledge the Australian Research Council through the ARC
Discovery grant scheme (DP0774006).
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